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Stability experiments were made on plane Poiseuille flow generated in a long 
channel of a rectangular cross-section with a width-to-depth ratio of 27.4. By 
reducing the background turbulence down to a level of 0.05 %, we succeeded in 
maintaining the flow laminar at Fkynolds numbers up to  8000, which is much 
larger than the critical Reynolds number of the linear theory, about 6000. The 
downstream development of the sinusoidal disturbance introduced by the 
vibrating ribbon technique was studied in detail at various frequencies in the 
range of Reynolds number from 3000 to 7500. This paper presents the experi- 
mental results and clarifies the linear stability, the nonlinear subcritical 
instability and the breakdown leading to the transition. 

1. Introduction 
The behaviour of a sinusoidal disturbance of finite amplitude in plane Poiseuille 

flow has been a principal subject of many theoretical studies on hydrodynamic 
stability. Stuart (1971) reviewed earlier theoretical work on this topic. To the 
present authors, the most interesting of the theoretical results is the prediction 
that subcritical instability occurs in a plane Poiseuille flow (i.e. disturbances 
can grow below the critical Reynolds number of the linear theory, provided their 
amplitude lies above some threshold value). According Po Lin (1955), Thomas 
(1953) and It0 (19744, the critical Reynolds number, based on the half-depth 
of the channel and the centre-plane velocity, is about 6000. The prediction was 
made first by Meksyn & Stuart (1951) and later confirmed by Reynolds & Potter 
(1967) and Pekeris & Shkoller (1967), through calculations based on the non- 
linear theory of Stuart (1960) and Watson (1960). Recently, It0 (1974b) solved 
the nonlinear equation for spaljially growing disturbances by modifying the 
method of Watson (1962). Giving the solutions for wider ranges of the Reynolds 
number and the frequency of disturbance, It0 (1974b) also showed that 
subcritical instability exists. 

On the laminar instability, numerous experiments have been made for various 
kinds of flow, since Schubauer & Skramstad (1943) first verified the linear theory 
for Blasius flow, but there are not many experiments for flows in rectangular 
channels. To the authors' knowledge, the only one is that of Kao & Park (1970). 
Using artificial excitation, they examined behaviour of sinusoidal disturbances 
in a channel with an aspect ratio (width-to-depth ratio of channel) of 8, to 
determine the neutral-stability curve. But, because the aspect ratio was not very 
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large, the result did not agree with that of the linear theory for plane Poiseuille 
flow. For example, the critical Reynolds number was about 1100, being much 
smaller than the theoretical value of about 6000. Transition to  turbulence in rect- 
angular channels was investigated by Davies & White (1928), Bad15 Narayanan & 
Narayana (1967), Pate1 & Head (1969) and others. In these experiments, the 
transition occurred at Reynolds numbers less than 2500, with abrupt appearance 
of turbulent bursts. Using a channel with an aspect ratio of 70, Karnitz, Potter & 
Smith (1974) succeeded in maintaining the flow laminar up to a Reynolds number 
of 5000, by reducing the background turbulence down to  a level of 0-3 yo. They 
found that sinusoidal disturbances preceded turbulent bursts, but they did not 
examine the sinusoidal disturbance in detail. Thus, to date, the theoretical results 
for the linear and nonlinear stabilities of plane Poiseuille flow have not been 
conclusively verified by experiment. 

In  the experiments described in Ohe present paper, we used a channel with 
an aspect ratio of 27.4. By reducing the background turbulence down to a level 
of 0.05 yo, we succeeded in maintaining the flow laminar at  Reynolds numbers up 
to 8000. The downstream development of the sinusoidal disturbance, introduced 
by means of a vibrating ribbon, was examined in detail at  various frequencies in 
the range of Reynolds number from 3000 to 7500. This paper includes experi- 
mental results on the h e m  stability, the nonlinear subcritical instability and 
the breakdown leading to the transition. 

2. Experimental apparatus and preliminary tests 
2.1. Wind tunnel 

The experiments were conducted in a rectangular channel, whose width, depth 
and length were respectively 40, 1-46 and 6OOcm, as shown in figure 1. The 
aspect ratio is 27-4. The half-depth h, on which the Reynolds number R is defined, 
is 0.73 cm. The channel is made of smooth Plexiglas (1 cm thick). Metal frames 
keep the channel free from warping. The flow is generated by a Sirocco fan at  the 
upstream end of the tunnel, and discharged into the atmosphere at the down- 
stream end of the channel. The velocity on the channel centre-plane V, could be 
varied from 0 to 25ms-l by throttling a valve a t  the entrance of the fan, Five 
damping screens (100 mesh) span the diffuser and the settling chamber, The 
contraction is two-dimensional, with contraction ratio 27.4. This arrangement 
reduced the background turbulence to a level of 0.05 % at U, = 12 m s-1, The 
level is almost independent of U,, so long as the flow remains laminar. The wave 
form of the background turbulence is almost sinusoidal, because a significant 
contribution (not less than 80%) comes from sinusoidal fan noise of 715Hz. 
Under the present experimental conditions, the frequency 715 Hz is one order 
of magnitude higher than the frequencies of unstable disturbances predicted 
by the linear theory. Thus, we may consider that the background turbulence is 
essentially less than 0.01 %. 

The x, y, x co-ordinate system adopted is shown also in figure 1. The x axis is 
measured from the entrance of the channel in the streamwise direction; the y 
axis is normal to the lower and upper walls, being measured from the centre-plane; 

I 
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 FIG^ I. Channel apparatus and co-ordinate system. Dimensions in centimetres. 

and the z axis is in the spanwise direction, its origin displaced from the spanwise 
centre by 6.5cm. In this co-ordinate system the lower wall is a t  y/F, = 1.0. The 
upper wall contains slits (1.2 cm wide) in the test section in the x and z direc- 
tions; a hot-wire probe mounted on a two-dimensional traversing mechanism is 
inserted into the test section through one of these. The slits were covered to  
prevent air leakage. Those not in use were filled up perfectly; that in use was 
covered with a block, which contained its own slit (about 0.3 cm wide) and sliding 
plate. It was inevitable that the upper wall should exhibit warping around the 
slits owing to the machining. The extent of this was examined along the spanwise 
and streamwise slits, and it was found that the magnitude of the depth variation 
due to warping was at  most 1.5 % of the mean depth (1.46 cm) in both directions. 
An effect of that variation on the basic flow will be mentioned later. Pressure 
holes of 0.5 mm diameter were drilled on the lower wall along a line z = 16.5 cm, 
at an interval of 10 cm, for wall-pressure measurements. 

2.2. Hot-wire anemometer 
Velocity measurements were made by a low-noise, constant-temperature hot- 
wire anemometer, with a linearizer (Nishioka & Sat0 1970). The frequency 
response of the hot-wire system was flat up to I0 kHz. The hot wire w&s copper- 
plated tungsten, 3-8,um in diameter, with 2-5 mm sensitive length. Diameters of 
the hot-wire supports, made of steel, were 0.5 mm at the roots, and 0.1 mm at tips 
to which the hot wire was welded. The probe stem, made of stainless steel 3 mm 
in diameter, generated a turbulent wake; therefore the whole channel flow 
became turbulent some distance downstream from the stem. It was plausible to 
conjecture that the turbulence wedge had some upstream influence. To keep the 
flow around the hot wire free from such effects, the distance of the hot wire 
from the stem (i.e. the length of the supports) was made comparable to the 
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wavelength of the disturbance to be investigated, which was about 5cm. The 
hot wire was always oriented so as to pick up the x component. The calibration 
made before and after each test run was reproducible to within 3 %. 

2.3. Transition Reynold5 number 
In  the present experiments, the transition to turbulence never took place at 
R < 8000 without artificial excitations; and it was sometimes possible to main- 
tain the flow laminar up to  R = 9000. This is attributed to the fact that the 
background turbulence was quite low, being about 0.05 yo. As described later, 
the stability experiments show that the critical Reynolds number for the linear 
instability is about 6000, and the spatial growth rate of unstable disturbances is 
quite small, so long as their amplitude remains small. In  other words, at  R < 8000 
or 9000, small disturbances need a distance larger than the length of the present 
channel to grow in amplitude to the degree sufficient for triggering the 
transition. 

The natural transition is preceded by intermittent bursts of irregular velocity 
fluctuations, similar to those of the turbulent spot found in the transition process 
of Blasius flow. As a prelude to each burst, there appear sinusoidal velocity 
fluctuations, with frequencies just outside the upper branch of the neutral curve 
of the linear theory. The spot-like fluctuations were not examined in detail. 

2.4. Measurements of basic $ow 

To ascertain the flow in the test section to be regarded as a plane Poiseuille flow, 
the velocity distribution and the streamwise variation of wall pressure were 
examined in detail a t  R = 3000-7500. The pressure measurements show that the 
streamwise pressure gradient decreases rapidly immediately downstream from 
the channel entrance, but i t  soon approaches a constant value (e.g. the gradient 
is maintained constant at x > 200cm at R = 7500). The constant gradients at 
various Reynolds numbers agree with the theoretical value for plane Poiseuille 
flow. 

The spanwise distributions of the centre-plane velocity V, are given in figure 2, 
to show the degree of the two-dimensionality at x = 425 cm, at various Reynolds 
numbers. R is calculated with the value of U, at z = 6.5 ern (i.e. at  the position 
ofthe streamwise slit indicated by an arrow in the figure). The distributions are 
flat a t  R < 3500, but wavy a t  R > 3500. As R increases, the wavy distortion 
grows without essentially changing the pattern. The pattern closely resembles 
that of the slight warping of the upper wall, mentioned before. For this reason, 
it is thought that the slight three-dimensionality at  R > 3500 is caused by the 
depth variation in the spanwise direction. The wavy distortion disappears when 
the flow becomes fully turbulent, as the figure shows. It is said that the appear- 
ance of the wavy distortion is peculiar to  the laminar flow. At R < 3500, the 
velocity distribution across the depth agrees almost completely with the theo- 
retical parabolic distribution a t  any spanwise position. As R increases, the 
distribution undergoes distortion and becomes asymmetric. The most asym- 
metric distributions are those measured at z = 3 and 6 cm at R = 7500; and in 
figure 3 they are compared with the parabolic distribution, together with 
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FIUIJRE 2. Spanwise distributions of velocity on the centre-plane U,. Arrow indicates 
position of the streamwise slit, z = 6.5 cm. w ,  fully developed turbulent flow. Fully 
developed laminar flow : 
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FIGURE 3. Velocity distributiom aoross the depth at various spmwise positions. R = 7500. 
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a symmetric distribution at z = 9 cm. Figures 2 and 3 show that the distortion of 
the two-dimensionality, and the deviation from the parabolic distribution never 
exceed 6 yo, even in the worst case, i.e. R = 7500. 

2.5. Procedure of stability experiments 

A sinusoidal disturbance was introduced into the basic flow by the so-called 
vibrating ribbon technique (Schubauer & Skramstad 1943). As shownin Ggure 1, 
a phosphor bronze ribbon (0.05mm thick, 4mm wide and 80cm long) was 
stretched close to the lower wall, under tension by means of weights. The segment 
inside the channel, 40 cm long, was free to vibrate normal to the wall, when driven 
by a sinusoidal electric current in a steady magnetic field produced by permanent 
magnets attached to the opposite side of the wall. The exciting current was 
supplied by a sine-wave generator through a power amplifier; and the frequency 
could be varied in a desired range. 

It was shown, from preliminary observations of small disturbances, that some 
distance from the ribbon was required for the disturbances to establish a structure 
which did not change downstream. Therefore the ribbon was located at the up- 
stream end of the test section; the position of the ribbon x,, = 400cm. The 
magnitude of disturbance was controlled by varying either the magnitude of the 
exciting current, or the height of the ribbon from tihe wall. The experiments on 
small disturbances were made at heights of 0.15, 0.3 and 0.85mm; those on 
large disturbances were made at  a height of 0-85mm. At height,s beyond 1 mm, 
a flutter occurs often, and a precise experiment is difficult. The ribbon has no 
undesirable effect on the flow at the heights adopted. 

Wave forms of x-component fluctuations (u fluctuations) were observed with 
a cathode-ray oscilloscope. The root-mean-square value u' G ( 3 ) a  was measured 
with an r.m.s. voltmeter. Phase angles of u fluctuations were measured with the 
oscilloscope, using the input to the ribbon as a phase reference. Spectral analyses 
of u fluctuations were made with a RC band-pass filter, whose bandwidth was 
3 % of the centre frequency at 3 dB attenuation. 

3. Results and discussion 
3.1. Nature of small disturbances 

The linear stability theory shows that the antisymmetric u fluctuation, with 
respect to  the centre-plane, gives a lower critical Reynolds number than the 
symmetric one. So it was intended to generate the antisymmetric disturbance in 
the present experiments. The variations in y of the amplitude and phase of 
u fluctuations are illustrated in figure 4 (plate l), which shows oscilloscope 
traces of a disturbance withf = 82 Hz at R = 6000. The photographs were taken 
at x - x,, = 32 cm; the upper trace in each photograph is the u fluctuation, the 
lower the exciting current. As photograph (a) shows, the primary fluctuation is 
purely sinusoidal, though i t  is accompanied by a weak fluctuation of 715 Hz (the 
fan noise). In  photographs (b)-(g) the noise was diminished, using the band-pass 
filter. The amplitude became nearly zero at y = 0,  where a sharp 180" phase shift 
occurred. (See photographs (c)-(g).) Photographs (e)-(9) indicate that a small 
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FIGURE 5. Amplitude and phase distributions of small disturbances. -, Ito's theoretical 
result for /3 ( 3 2lrfh/U,) = 0-27 at R = 4000. Our experimental conditions were as follows: 

R ( x  30 40 60 
f (Hz) 47.0 50.4 82.0 
B 0.36 0.27 0.32 

0 0 0 

phase shift occurred also near the wall. These features are more properly illus- 
trated in figure 6 ,  which shows the amplitude and phase distributions for dis- 
turbances a t  (R , f )  = (3000,47), (4000,50*4) and (6000,82 Hz), all measured at  
x-x, = 25cm. As the amplitude, the r.m.8. value u' is plotted on an arbitrary 
scale. Each amplitude distribution is symmetric with respect to the centre-plane, 
having two maxima near y /h  = k 0.85; the maximum value Uk is less than 
O.OlU,. The phase difference at  any points symmetrical with respect to the 
centre-plane is always 180°, in each case. Thus, the sinusoidal disturbance is 
antisymmetric. 

A large number of similar measurements were made along the streamwise 
slit at  x - x,, 2 32 cm, with various values of R and f .  Measurements of streamwise 
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FIG- 6. Wavelengths of small disturbances. 
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phase variation show that the disturbance is indeed a travelling wave. It appears 
that whether a disturbance damps or grows while travelling downstream is 
strongly dependent on its initial magnitude. In  fact, it  is found that even a dis- 
turbance which damps according to the linear theory when its amplitude is 
small does grow downstream when its amplitude exceeds a certain threshold. 
We focus OUT attention first on disturbances of small amplitude. 

3.1.1. Linear development. For a small disturbance, it is found that damping 
and amplification depend merely on R and f, and that the structure does not 
change much downstream. Phase distribution is independent of amplitude, and 
wavelength is independent of distance from the ribbon. The measured wave- 
length h is plotted against f in figure 6 at various Reynolds numbers. The 
phase velocity C given from the relation C = fA varies from 0.2& to 0-3& for 
the ranges of R andf examined. The behaviour of the small disturbance may be 
oalled linear development. 

To illustrate the linear development more clearly, the non-dimensional 
maximum value U ~ / U ; , ~  is plotted on a logarithmic scale against x - x o  in 
figures 7 (a)  and (b ) ,  where xo - x, = 32 om and a;, = &(x0). Figure 7 (a )  shows 
the results for a fixed frequency f = 72 Hz at various Reynolds numbers and 
illustrates the effect of the Reynolds number: damped at R = 4000 and 5300, 
nearly neutral at  R = 6400, and amplified at  R = 7000. On the other hand, 
figure 7 ( b )  shows the results at a fixed Reynolds number R = 7000 at various 
frequencies : amplified at  f = 60 and 72 He, nearly neutral at  f = 50Hz, and 
damped at f = 82 and 92Hz. From these figures we may conclude that a small 
disturbance damps or grows exponentially in the streamwise direction. 

3.1.2. Two-dimensionality of the small distzcrbance. The amplitude and phase 
distributions of a disturbance with f = S2Hz measured at  various spanwise 



Stability of plane Poiseuille $ow 739 

3.0 3.0 

2.0 2.0 

3 1.0 1.0 
2 .s 

0.5 0.5 

0.3 0.3 

0.2 
o'20 5 10 15 20 25 

x - z o  (cm) z - z,, (cm) 

FIGURE 7. Linear development of small disturbances : streamwise growth of decay of non- 
dimensional maximum in fluotuation uk/u& Results for fixed (a) frequency f = 72H.5, 
(b )  Reynolds number R = 7000. 
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FIGURE 8. Examination of two-dimensionality of small disturbances. Amplitude and 
phase distributions at various spanwise positions at  R = 7500 and f = 82 Hz. 
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positions at  R = 7500 are given in figure 8, to show the degree of the two- 
dimensionality. The amplitude is plotted on an arbitrary scale, but the relative 
magnitudes are expressed correctly. The amplitude distributions at  different 
spanwise positions differ in magnitude, but their shapes are similar, except for 
small dips at  0.7 < ly/hl < 0.9. The phase angle is plotted in such a way that its 
shift in the spanwise direction can be observed. The phase distributions have 
almost the same shape, except for small distortions at x = 0 and 6 cm, correspond- 
ing to the dips in the amplitude distributions at the same positions. The shifts in 
the spanwise direction are nearly independent of y, and the amount of the shift 
between z = 0 and 9 cm is less than 50". This is quite small, considering that the 
wavelength of the disturbance is 4.2 om. Thus, the disturbance is approximately 
two-dimensional. 

3.1.3. Comparison with the linear stability theory. The skructure and the 
behaviour of the small disturbances may be well described by the expression 
adopted in the linear stability theory: 

u = Re(,/2u'(y)exp [i(ax-,&-B(y))]}. 



Xtability of plane Poisedle  $ow 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

741 

0 

0 

0 

0 
0 

- 
0 0 

0 0  

o o  

- 0 

- 
0 0 

0 0 
- 

- 
I I 1 1 1 1 1 

:r / 0.02 o~ 

-0.02 

- a, 
- 0.04 

0 

-0.06 -0.06 

0.02 

B 
0.4 0.4 

0 

- 0.02 0 

-0.04 

FIUURE 10. Amplification rate --a, against angular frequency /3. 

R ( x 
I-- 

(4 @) (4 (4 
Theory (Ito) - 30 40 60 SO 
Present 0 30 40 57 70 



742 M .  Nishioka, 8. I ida and Y .  Ichikawa 

42u‘(y) and O(y) are real quantities, representing amplitude and phase distribu- 
tions, respectively. The angular frequency /3 is also real, but a is complex. Its 
real part a, denotes the wavenumber; and the imaginary part a,, the spatial 
damping rate (or - ai the amplification rate). We now describe our experimental 
results in terms of a and /3 (which are made non-dimensional by using h and V, 
as the scales). At the same time, we compare them with those of the linear stability 
calculation carried out by Ito ( 1 9 7 4 ~ ) .  The comparisons of u’(y)  and O(y) have 
been made in figure 5. It is here noted that the amplitude and phase distributions 
do not depend on R and f strongly, as shown in figure 5.  Figure 9 shows the 
relation between 

ar = 27~h/A and /3 = 27rfh/U,. 

Experimentally, the amplification rate is determined from 

- ai = h d  In uJdx. 

The value thus obtained is plotted against /3 in figure 10, which shows that the 
amplification rate is at  most about 0.02 at R = 7000. This is quite small, con- 
sidering that free boundary layers, such as jets and wakes, have amplification 
rates of about 0.2. Comparison with the neutral-stability curve is made in 
figure l i .  The experimental value of the critical Reynolds number is about 
6000, in agreement with Ito’s theoretical value, 5771. 

All comparisons made above show good, or fair, agreement, and that the small 
disturbance develops as predicted by linear stability theory. 

3.2. Outline of the breakdown 

For a supercritical growing disturbance with f = 72Kz at R = 7000 (whose 
linear development is illustrated in figure 7), it  is found that downstream 
development begins to deviate from exponential growth at a station where uh 
reaches about 0-O25Uc, and the disturbance grows catastrophically downstream. 
This is one of the characteristic features of the nonlinear development of large 
disturbances, and eventually leads to the breakdown of periodic motions. 
Experiments of Klebanoff, Tidstrom & Sargent (1982) on the instability of 
Blasius flow show that, in the process of the breakdown, an inflexional velocity 
distribution with intense shear (evidenced by ‘spikes’ in the wave form of the 
u fluctuation) appears instantaneously for each cycle of the fundamental oscilla- 
tion. They also show that, subsequently, higher-frequency motions called 
‘hairpin eddies’ are generated, owing to a local secondary instability of the 
instantaneous velocity distribution. This happened in our experiments. 

Oscilloscope traces, which illustrate the breakdown of a disturbance with 
f = 72Hz and at  R = 7200, are shown in figure 12 (plate 2). They were obtained 
for an arbitrary fixed ribbon current at various streamwise positions x-x,, 
(xo-xr = 32cm) at  y /h  = 0.47. The upper trace in each photograph is the 
u fluctuation (decreasing velocity is in a downward direction); values of u’/Ue and 
x - xo are noted in the caption. The lower trace is the input to the ribbon. The 
wave forms are purely sinusoidal at x - xo = 12 and 13 om. At x - xo = 14 cm, 
a low-velocity pulse (a spike) begins to appear for each cycle, and grows 
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FIGURE 14. Instantaneous velocity distributions drawn from figures 13(a)-(8). Time T 
corresponding to each distribution is noted on the trace of the u fluctuation at y/h = 0.6, 
sketched in the figure. 0,  mean velocity. 

catastrophically downstream. Suggesting formation of 'hairpin eddies ' ; higher- 
frequency oscillations appear at x-x, = 16 to 18cm. The photographs show 
that the phase difference of the fundamental between x-x,, = 12 and 18 em is 
approximately 360" (i.e. the wavelength of the fundamental is about 6 ern there). 
Thus, the streamwise extent of the region where the whole process takes place, 
from appearance of spikes to formation of hairpin eddies, is smaller than one 
wavelength of the fundamental. 

Wave forms of u fluctuations at  various y positions at x - xo = 15 ern are 
shown in figure 13 (plate 3). The wave forms near the lower wall ( y /h  = 1.0) 
are considerably distorted by the presence of higher harmonics of large ampli- 
tude. This feature is in contrast to the case of Blasius flow: Klebanoff 
et al. (1962, figure 26) showed that higher harmonics play no vital part at the 
initial stage of the breakdown. As for the fundamental, a sharp 180" phase shift 
occurs at  y = 0, where the fluctuation becomes vanishingly small. No spikes 
appear at y < 0 (above the centre-plane), and there u fluctuations are much 
smaller than those at y > 0. This suggests that the breakdown is a local pheno- 
menon, at least in its initial stage. The photographs show instantaneous velocity 
( U + u). The fluctuations a t  various y positions are so regular that we can draw an 
instantaneous velocity distribution across the depth, at an arbitrary instant 
during the cycle, using the input to the ribbon (a purely sinusoidal wave in each 
photograph) as a time-marker. Figure 14 shows the instantaneous velocity 
distributions thus obtained for y > 0. The time T corresponding to each distribu- 
tion is noted on the trace of the u fluctuation at  y/h = 0.60 sketched in the figure. 
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FIGURE 15. Growth or decay of a subcritical disturbance, with f = 72 Hz at R = 5000, 
depending on its initial intensity u;, o/ Uo,o. Streamwise variations of maximum intensity 

U shown at  the following different values : 

u 6 , o l ~ c , o  0.004 0.006 0.009 0.012 0.015 0.020 
(i 1 (ii) (iii) (iv) (4 (vi) 

The mean velocity is represented by dots; U, remains almost the same as the 
undisturbed value. Most instantaneous distributions are inflexional, having 
intense shear around y/h = 0.50 at T = 4to 6, and around y/h = 0.62 at T = 8 to 9. 
Distributions at T = 4 to  6 are complicated with the presence of higherharmonics. 

Klebanoff et al. (1962) showed that, as a prerequisite for the breakdown, 
streamwise vortices are generated owing to three-dimensional development of 
the fundamental with ' peak-valley ' spanwise structure. At the present stage, we 
have not fully examined the three-dimensionality of large disturbances. But, 
especially at  the later stage of the breakdown, various different features are 
observed a t  the same station, without apparent changes in %he experimental 
conditions. This suggests that the flow is three-dimensional there. 

In  summary, it may be concluded that the breakdown occurs as a result of 
a local secondary instability of t.he inflexional velocity distribution, with intense 
shear appearing instantaneously for each cycle of the fundamental motion, just 
as happens in Blasius flow. The exponential growth of the small disturbance 
at  R > R, always leads to  the transition to turbulence through the breakdown. 
Thus, the so-called supercritical equilibrium flow was not realized in our experi- 
ments. (See Stuart 1971, for the equilibrium flow.) 

3.3. Nonlinear subcritical instability 

3.3.1. Determination of the threshold value. To find out how the downstream 
development of subcritical disturbances depends on their magnitude, the stream- 
wise variation of the maximum r.m.s. value u& was examined, by changing the 
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initial intensity systematically. The results for a subcritical disturbance, with 
f = 72 Hz at R = 5000, are shown in figure 15. uh/U,,, is plotted on a logarithmic 
scale against x-xo, where x , -x ,  = 32 cm and U,,, = UJx,). The intensity a t  
cc = x, (i.e. u ~ , , / ~ , , )  is called the initial intensity. It was changed by varying the 
magnitude of the input to the ribbon. As the figure shows, at initial intensities 
less than 1 yo, disturbances eventually damp downstream. This is the case of 
linear development. On the other hand, a disburbance with an initial intensity 
of 1.5 yo grows downstream, gradually at first but rapidly later, and as a result 
the transition to turbulence occurs downstream. Increase in the initial intensity 
further beyond 1.5 yo has no significant effects on the downstream development, 
except that the starting point of the rapid growth moves upstream. At an initial 
intensity of 1.2 %, the disturbance is nearly neutral over a considerable distance, 
though it is eventually amplified downstream. Figure 15 presents evidence for 
the theoretical prediction that subcritical instability occurs in a plane Poiseuille 
flow. The figure shows that the threshold value of uh/U, for the instability is 
about 1.5 yo in this example. 

Similar observations were made at R = 4000, 5000 and 6000 at various fre- 
quencies, to examine the dependence of the threshold value on the Reynolds 
number and frequency. The results are given in figure 16, where the threshold 
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FIGURE 17. Streamwise variation of maximum intensities of total and harmonic com- 
ponents observed in the nonlinear subcritical growth of a disturbance with a fundamen- 
tal frequency f = 72 Hz at  R = 5000. , total; 0 ,  fundamental (72 Hz) ; 0,  second 
(144); 0, third (216); 0, fourth (328). A-E, stations. 

value (U;/U,)~ is plotted against /3( = 27~fh/U,). The figure includes theoretical 
results of It0 (1974b). Experimental curves at  three different Reynolds numbers 
bear resemblance to each other; each has one minimum and one maximum. We 
use (or Pmax) to denote the value ofPcorresponding to the minimum (or the 
maximum). It is interesting %hat the value of /3 at which - cc, becomes maximum 
is nearly equal to /3min. The existence of a maximum in the variation of the thres- 
hold value with P was unexpected; some remarks will be made about it later; 
except for this, our experiment verified the theoretical predictions. In  fact, Ito’s 
solution at  R = 5000 agrees quite well with the experiment. Meksyn & Stuart 
(1951), Reynolds &Potter (1967) and Pekeris & Shkoller (1969) gavethe threshold 
amplitude of disturbance stream function before Ito (19744; these earlier results 
are not included in figure 16, owing to the lack of information required t o  estimate 
the threshold value of the u fluctuation; but the predictions of the earlier authors 
agree with the present experimental results qualitatively. 

3.3.2. Details of the subcriticul growth process. The growth process of a dis- 
turbance with f = 72Hz at R = 5000, with initial intensity about 2 %, was 
examined in detail to clarify the subcritical instability. Spectral analyses show 
that, as the fundamental grows, its higher harmonics develop in the streamwise 
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FIGURE 18. Changes in the amplitude and phase distributions of the fundamental fluctua- 
tion in the nonlinear subcritical growth of the disturbance illustrated by figure 17. m, 0 ,  
total intensities. 
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direction. This is illustrated in figure 17. The maximum r.Iy1.s. values of the total 
and harmonic components are plotted on a logarithmic scale against x - x o ,  
which is expressed relative to q,o. The stations A-E in the figure are the stream- 
wise positions where detailed observations were made. The subcritical instability 
sets in a t  about A. The initial growth of the fundamental is gradual; and the 
growth is rapid at  C. The second harmonics start to grow a t  A, a t  a rate greater 
than that of the fundamental. This is evidence for the presence of nonlinear 
activity at  an intensity of disturbance as low as 2 %. Downstream from station C, 
the third and fourth harmonics grow more rapidly than the fundamental and the 
second. No spectral components with frequencies smaller than the fundamental 
appear, until the line-like spectrum, centred at  the fundamental 72 Hz, broadens 
appreciably downstream from C. 

Whether a disturbance grows or damps must depend on amplitude and phase 
distributions and wavelength. Thus, it is interesting to see how the disturbance 
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FIGURE 19. Streamwise variation of phase angles of harmonic components in nonlinear 
subcritical growth of the disturbance illustrated by figures 17 and 18. #*, q53 represent 
the phase lags of the fundamental, second and third, respectively. Measurements made 
dong lines y/h = const. 
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A 0 0 

under consideration changes during subcritical growth. The amplitude and phase 
distributions of the fundamental at stations A-E are given in figure 18. The 
distributions of the total r.m.s. value at  D and E are also included in the figure. 
The distribution of the total is almost the same as that of the fundamental at  
each station. The distributions of the fundamental show the shapes predicted by 
linear theory at station A, but change downstream. The amplitude distribution 
changes in such a manner that the position of the maximum amplitude ym moves 
towards the centre-plane y = 0; y,/h varies from 0.88 at A to 0.75 at E. The phase 
distribution changes markedly. The 180" phase shift occurring around the centre- 
plane is almost discontinuous at A and D, but gradual at  other stations. The 
amount of the shift occurring near the wall becomes larger downstream. 
Especially at  E, a shift of more than 180" occurs between y / h  = 0.5 and 0.95. 
These features indicate that the fundamental changes its structure substantially 
during the growth process. 

The streamwise variations of phases of harmonic components are shown in 
figure 19. In  this figure q52 and q53 denote the phase lags of the fundamental, 
second and third harmonics, respectively, all being expressed in radians. The 
phase relations between the three components are expressedarbitrarily. For ready 
comparison with the phase velocities, $q52 and &q53 are plotted. These measure- 
ments were made along the lines y /h  = 0.35,0.65 and 0-85. The variation of along 
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FIGURE 20. Amplitude distributions of higher-harmonia aomponents in the nonlinear 
subcritical growth of the disturbance illustrated by figures 17-19. 0, seaond harmonio 
at station D; @, the same at  E; A, third at E. 

these lines differs slightly, by amounts consistent with the phase distributions 
in the y direction in figure 18. Both and -$g3 also show similax distributions, 
This suggests that the second and third harmonics change in structure down- 
stream. The amplitude distributions of the second and third harmonics at D and E 
are given in figure 20. As for the fundamental, there is no significant departure of 
the phase velocity from that ofthe linear theory in the region up to D; C = 0-27U, 
and h = 5.2 h (38 mm). But the phase velocity increasesrapidly downstream from 
D. As can be seen from figure 19, the phase velocities of the second and third 
harmonics are equal to the phase velocity of the fundamental in the region up to  
C, but the three components travel at  different phase velocities downstream 
from C. 

The wave forms of the total u fluctuations at stations A-C are almost sinusoidal; 
those at D and E are largely distorted by the presence of higher harmonics of 
considerable magnitude. A notable feature is that, at  E, an intense low-velocity 
pulse appears for each cycle of the fundamental a t  y /h  = 0.8 to 0.9. This is 
shown in figure 21 (plate 4). Instantaneous velocity distributions at  E indicate 
that an inflexional velocity distribution with intense shear around y/h = 0.71 
appears when the pulse appears. As a result of the instability of the instantaneous 
distribution, the breakdown proceeds downstream just as happens in the case 
of the supercritical disturbance mentioned in (i 3.2. 

The mean velocity distributions are compared with the parabolic distribution 
in figure 22. Deviation from the parabolic distribution proceeds downstream, 
but it is small upstream of C. U, remains almost constant upstream of E. In fact, 
even at E, U, = 0-997q,0.  Hence, judging from figure 22, the flow rate across the 
half-depth is larger at  station E than a t  stations A-D. This indicates that the 
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FIGURE 22. Mean velocity distributions in the nonlinear subcritical growth of the dis- 
turbance illustrated in figures 17-21. -, parabolic distribution. 
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flow around E is three-dimensional. The reproducibility of the mean and flucbua- 
tion velocity fields mentioned so far is good upstream of E, but not so downstream 
from E. This suggests that the flow is three-dimensional there. 

From similar observations at various values of R and f, it  appears that the 
transition at subcritical Reynolds numbers proceeds as described above at 
/3 d pmax (mentioned in connexion with figure 16). It also appears that, at 
/3 =. Pmax, the transition is triggered directly by spot-like fluctuations appear- 
ing abruptly before the fundamental has grown sufficiently. This is why the 
threshold value of u&lUo decreases as /3 increases beyond Pmax (see figure 16). 
We believe that this may be due to the highly three-dimensional nature of a 
disturbance with a large p, We should like to clarify our idea of the effect of 
the three-dimensionality on the subcritical instability; this must be done by 
controlling it as Klebanoff et al. (1962) did; the study is in progress. 

4. Conclusion 
In  this paper we presented experimental results for the stability of a, plane 

Poiseuille flow generated in a long rectangular channel with an aspect ratio of 27.4. 
The flow was maintained laminar up to R = 8000 by reducing the background 
turbulence down to a level of 0.05 yo. The downstream development of the anti- 
symmetric sinusoidal disturbance, which was introduced by means of a vibrating 
ribbon, was investigated in detail at  R = 3000-7500. We compared the theoretical 
results of Ito ( 1 9 4 7 ~ ~  b ) ,  on linear and nonlinear stability, with our observations. 
We draw the following conclusions. 
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(i) The small disturbance behaves as predicted by linear stability theory. 
(ii) Nonlinear subcritical instability occurs when the intensity of subcritical 

disturbances lies above a certain threshold value. The latter is found to be 
a function of Reynolds number and the frequency of disturbance. The experi- 
mental relations between the threshold value and the frequency obtained at 
R = 4000,5000 and 6000 seem to support the theoretical relation of Ito (1974b). 

(iii) The following are notable features observed in the initial stage of the 
subcritical growth process (i.e. in the region upstream of station C in figure 17). 
(a)  The fundamental markedly changes its amplitude and phase distributions 
downstream. ( b )  The growth rates of the second and third harmonics are greater 
than that of the fundamental. ( c )  These harmonic components travel downstream 
at the same phase velocity. (d) The mean velocity distribution undergoes no 
large distortions. 

(iv) Growth of the fundamental in both the subcritical and supercritical cases 
eventually leads to breakdown of the periodic motion and to transition to 
turbulence. 

(v) As in the case of Blasius flow, breakdown occurs as a result of a local 
secondary instability of an inflexional velocity distribution, with intense shear 
appearing for each cycle of the fundamental oscillation. 

The authors express their cordial thanks to  Professor H. Sato, Institute of 
Space and Aeronautical Science, University of Tokyo, for suggesting this study, 
and for his helpful advice; and to Dr N. Ito, National Aerospace Laboratory, for 
kindly providing the results of his stability calculations. 
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.f + 
FIGURE 4. Wave forins of u fluctuatioris at various y positions: a small disturbaricc, with 
f = 82 Hz at R = 0000. Upper trace in (a)-  (q )  represents the u fluctuation, tlic lower the 
ribbon cnrrant. 
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(s) 
FIGURE 12. Appearance of low-velocity pulses arid higher-frequency oscillations in the 
breakdown process of a snpercritical disturbance, with a fundamental freqiiencyf = 72 He 
at R = 7200. Upper trace in (a)-@) shows the u fluctuation, the lower the ribbon ciirrciit. 
Decreasing velocity in downward direction. 
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FIGURE 13. Wave forms of u fluctuations observed a t  various y positions, at x -zo = 15 em, 
for the disturbance illustrated by figure 12. (a ) - (s )  indicate the instantaneous velocity 
U + u  and the ribbon current. y/h:  (a) 0.97; (b) 0.96; (c) 0.93; ( d )  0.86; (e) 0.80; (f) 0.73; 
(9 )  0.66; (h) 0.60; (i) 0.53; (j) 0.47; (k) 0.40; ( 1 )  0.30; ( m )  0.02; (12) 
( p )  -0.62; ( q )  -0.76; ( v )  -0.89; ( 8 )  -0.92. 

-0.23; (0) -0.49; 
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( c )  (f) 
FIGURE 21. Wave forms of u fluctuations, a t  various g positions at station E, in the 
nonlinear subcritical growth of the disturbance illustrated by figures 17-20. (a)-(f ) 
indicate the instantaneous velocity U + 2.l and the ribbon current. 
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